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EXECUTIVE SUMMARY 

This project is primarily based on Federal Aviation Administration (FAA) project 09-G-015, 
titled “Damage Tolerance Based Maintenance Planning of Aircraft Structures Subjected to 
Stochastic Process Random Effects,” which was conducted between September 2009 and April 
2011. That project focused on managing aircraft structural reliability by using the Damage 
Tolerance (DT) methodology combined with nondestructive inspections, and addressed an 
important, yet often overlooked, technical issue—to rigorously model statistically correlated 
strengths in a time-dependent reliability analysis. It showed that the conventional approximate 
approach might lead to significant errors. It also presented, for the first time, a  
Strength-Conditioned Importance Sampling (SCIS) method tailored to the analysis of  
time-dependent aircraft structural reliability. When facing correlated strengths with stochastic 
loads, the standard Monte Carlo method is commonly considered the only reliable solution 
method—but it is also known to be inefficient, especially for analyzing very small probabilities 
of failure. The increased efficiency of SCIS can be attributed to the conditional expectation 
method framework and importance sampling. The latter requires a fast sample generator such as 
a Markov-chain Monte Carlo (MCMC) algorithm. The earlier study suggested that only a few 
thousand SCIS-based MCMC samples could produce results with accuracies comparable to 
using MC with more than 1.e+06 samples. 

 
In addition to addressing correlated strengths, another advantage of the SCIS framework is to 
cover a wide range of time-dependent strength scenarios, such as damage degradation, aging, and 
repair/replacement, after inspections. However, for sharp, step-function-like, strength-shifting 
events, such as replacements, the performance of SCIS was not well understood. Therefore, in 
this project, the theory of the SCIS approach has been studied more thoroughly and a computer 
tool, FlyRisk, has been developed. More specifically, a more effective importance sampling 
density function has been investigated and implemented in FlyRisk. Although the SCIS 
framework is capable of handling different degrees of repair qualities, for practical purposes, the 
FlyRisk assumed a maintenance policy that detected damaged parts are to be replaced with 
original parts or those repaired to “as new” condition. Other maintenance policies can be added 
to FlyRisk if needed. 

 
During the development of SCIS and FlyRisk, several challenging issues associated with 
calculating small probabilities of failure (less than 1.e-3) were addressed. The solutions are 
summarized below: 

• Three importance sampling density functions, denoted as h1, h2, and h* in this report, 
were investigated and compared. Although, in theory, h* seemed to offer the optimal 
performance, in practice, it was the most complicated in terms of implementation and 
validation. Consequently, h2 was selected for FlyRisk implementation because of its 
balanced performance in speed, accuracy, and robustness. To achieve the potentially 
highest performance, more research will be needed to study and implement h*. 

• Using the SCIS samples, a kernel density estimator was combined with a fast probability 
integration scheme to compute the single-flight probability of failure. This unique 
approach relieves the MATLAB FlyRisk code from requiring separate reliability analysis 
software to estimate one of the key probability integrals in the SCIS formulation. As a 
result, a more compact and completely standalone FlyRisk code has been developed. 



 

viii 

• A flexible analytical reliability function was applied to fit the reliability history for each 
strength realization. To compute the cumulative reliability for a large number of flight 
numbers over the service life, the fitted function can typically improve the reliability 
calculation speed by more than two orders of magnitude 
 

This project includes a relevant supporting task, which is to develop a Bayesian parameter 
updating tool. The objective of the Bayesian project sought to mitigate the lack-of-data issue by 
leveraging inspection results. Applying Bayes’ theorem to update distribution parameters is a 
well-used approach, but the drawback is that it may need a substantial amount of inspection data. 
Accordingly, likelihood functions were created based on the DT methodology and probability of 
detection function. Furthermore, the missed (negative results) inspection records could be 
included as a part of the likelihood function. The result of the task is a standalone Bayesian 
updating software tool. 

 
The deliverables of this project include the final report, FlyRisk software with user’s guide, and 
the Bayesian updating software with user’s guide. 
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1.  INTRODUCTION 

This project is a continuation of earlier efforts supported by the FAA which focused on 
managing aircraft structural reliability by using the Damage Tolerance (DT) methodology 
combined with nondestructive inspections. In those efforts, the concept of Strength-Conditioned 
Importance Sampling (SCIS) was introduced and a Bayesian approach was developed. The 
reader is strongly encouraged to review [1–3] prior to this report. 
 
During the last several decades, several major aircraft structural failures could be traced to rare 
material manufacturing defects. To help prevent such high-consequence failures, significant 
progress has been made in developing and applying DT design methodology, with an emphasis 
on fatigue and fracture failure modes associated with initial flaws [4–6]. The DT methodology 
accepts the possible existence of flaws in structures and incorporates nondestructive inspections 
and subsequent risk-mitigation strategies to sustain structural reliability and safety. 
 
Other sources of structural failures that have received less attention are environmental effects 
(e.g., from moisture and temperature variations) and impact damage that can significantly reduce 
structural strength over time. If the damage or degradation are not detected and fixed in a timely 
fashion, they can potentially cause unexpected structural failures. 
 
The goal of the research was to develop a Probabilistic Damage Tolerance Analysis (PDTA) 
methodology and analysis tools specifically for time-dependent reliability models which involve 
various strength, random variables, and stochastic loading processes. Figure 1 shows the concept 
of a time-dependent reliability model for which the reliability is governed by the degree of 
overlapping in the applied load and the remaining strength, which deteriorates as the result of the 
growth of defects or other damages. In general, the rate of strength reduction and the rate of 
failure might be accelerated because of aging and environmental factors. 
 
Walk-around inspections using specialized nondestructive evaluation devices are routinely 
performed to detect apparent damage; further, inspections are scheduled because smaller or 
hidden damage cannot be detected. After a defect or damage has been detected and fixed 
(repaired or replaced), the residual strength of the structure will have changed, sometimes 
drastically. Therefore, in building a reliability model, the quality of the fixed parts should be 
incorporated in the modeling of residual strength. With a proper reliability model, the inspection 
schedules can be optimized by managing the risk, subject to reliability, operational, and other 
constraints. For example, the next inspections could be based on detecting a certain damage size 
with a high probability of detection but before the Probability of Failure (POF) becomes 
unacceptable. Several Risk or Reliability-Based Maintenance Optimization (RBMO) approaches 
have been proposed in recent years [7–9], but these approaches did not specifically consider or 
address the effect of strength correlation for time-dependent reliability analysis. 
 
With PDTA, the sources of uncertainty include systematic and random errors of the failure 
models, applied loads, material properties, geometries, environmental factors, defect and damage 
occurrence rates, and detection capability. As shown in figure 1, aircraft structural reliability 
models can involve strength-related Random Variables (RVs) and stress random processes. 
While varying among different aircraft in a fleet, the strength-related RVs, such as the fracture 
toughness and initial flaw size, at a certain location are essentially time independent for 
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individual aircraft. Therefore, the single-flight reliabilities between the flights are correlated 
because of strength-related random variables. These correlations often make accurately 
computing the interval reliability difficult and time-consuming. With current PDTA practices, 
either the correlations are ignored or the approximate methods, such as the reliability bounds, 
have to be used. 
 

 

Figure 1. Time-dependent reliability model [1] 

To accurately and efficiently compute time-dependent reliability and conduct RBMO, this 
project has developed an accurate and efficient method called Strength-Conditioned Importance 
Sampling (SCIS). SCIS integrates the Strength-Conditioned Expectation Method (SCEM) with a 
tailored Importance Sampling (IS) methodology. 
 
Through the conditioning of the realizations of strength variables, the flight-to-flight reliabilities 
become independent, which allows the interval reliabilities to be computed accurately. In 
addition, the efficiency issue is overcome by using the Markov-chain Monte Carlo (MCMC) 
algorithm to generate IS samples in the failure domain. In the standard Monte Carlo (MC) 
approach, the required number of samples depend strongly on 1/POF, but the required number of 
MCMC samples to achieve the same accuracy is independent of POF. Therefore, the  
MCMC-based IS approach is well suited for structural reliability analysis. For very small failure 
probability (e.g., POF < 1.e-05), the SCIS approach can drastically reduce the number of random 
samples needed for MC to achieve a high level of accuracy. Furthermore, for risk-optimization 
purposes, the samples can be reused to compute reliabilities for various maintenance plans. The 
benefit of applying MCMC to RBMO problems are outlined in [10, 11]. 
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This report documents the updated SCIS method and presents a demonstration example using a 
fracture mechanics model. The SCIS approach has been implemented in FlyRisk for the 
demonstration. The SCIS reliabilities for both the “with” and “without” inspection cases are 
computed and validated using SCEM MC with large sample sizes. 
 
2.  OVERVIEW OF TIME-DEPENDENT RELIABILITY MODEL 

The basic assumption for the proposed methodology is that the initial structural strength, X, is a 
function of time-independent random variables, x, and the residual strength may change over 
time, t, because of loading (random and impact) and environmental (temperature, moisture, etc.) 
effects, until the structure has survived the service life, been repaired/replaced, or failed. Because 
the duration of each flight is relatively short compared to the structural life, X is assumed to be 
constant during each single flight. However, the applied load is a stochastic process that can vary 
significantly during each flight. For this study, the maximum load during any flight is 
characterized using a random variable, and the maximum loads are assumed to be independent 
between the flights. 

 
Based on the above assumptions, a structural failure will occur if, during a flight, i, the strength 
is exceeded by the maximum of the stress, ( )iS t , denoted as ( ) arg max ( )i i

t
Y t S t= . Therefore, the 

single-flight probability, P, of survival, or reliability, for the i-th flight is: 
 
 ( ) [ ( ) ( )]s i i iR t P X t Y t= >  (1) 
 
where the subscript “s” denotes “single flight.” The cumulative reliability for the duration of 

1t t=  to Nt , denoted as (.)R  without a subscript, is the reliability for N flights and can be 
formulated as: 
 
 { }1 1 1 2 2 2( ) [ ( ) ( )] [ ( ) ( )]... [ ( ) ( )]N N NR t P X t Y t X t Y t X t Y t= > ∩ > ∩ >  (2) 
 
By denoting ( ) ( )i i iE X t Y t= > , equation 2 is abbreviated as: 
 
 { }1 2( ) ...N NR t P E E E= ∩ ∩  (3) 
 
Because of the statistical correlations between ( ) 'iX t s  and 'iE s  that result in complex joint 
probability density functions, an analytical solution for the cumulative reliability is generally 
unavailable. There are several solutions to compute ( )NR t , including the bounding approach [12], 
which provides approximate solutions, and the MC approach, which is usually time-consuming. 
In the following sections, the limitations of the bounding approach will be discussed and an 
alternative random sampling approach that is highly efficient relative to the MC approach 
presented. 
 
For the remainder of this report, “cumulative reliability” will be called “reliability” and the 
cumulative probability of failure will be termed POF or failure probability. 
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RELIABILITY BOUNDS 2.1  

The statistical correlation coefficient between any two events ( ) ( )i i iE X t Y t= −  and 
( ) ( )j j jE X t Y t= −  is: 

 

 [ ]
i j

i i

i j i j
E E

E E

E E E E E E E
ρ

σ σ

   −   =  (4) 

Assuming ( )iY t  are statistically independent and identically distributed, equation 4 leads to  
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[ ]{ } [ ]
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ρ
σ σ

σ σ

σ σ

ρ σ σ

σ σ

   −   =

 − − + − − − =

       − ⋅ + − ⋅       =

+
=

 (5) 

in which σ  is the standard deviation. Because a realization of X that results in a relatively 
higher/lower ( )iX t  will likely result in a higher/lower ( )jX t , the physical correlation coefficient 

i jX Xρ  is expected to be positive and therefore 0
i jE Eρ > . The positive correlation leads to the 

following unimodal reliability bounds [12]: 
 

  
1

( ) ( ) min ( )
N

s i N s iii

R t R t R t
=

≤ ≤∏  (6) 

 
Assuming no maintenance is performed, reliability should monotonically decrease because of 
strength deterioration. Therefore, the last single-flight reliability is the reliability upper bound, 
(i.e., min ( ) ( )s i Ni

R t R t= ). The lower bound of the reliability, or the upper bound of the POF, is 

used for a conservative aircraft risk assessment. 
 
Expressed in terms of probabilities of failure using the relation ( ) 1 ( )s i s ip t R t= − , equation 6 can 
be converted to: 
 

 
1

max ( ) ( ) 1 (1 ( ))
N

s i N s ii i

p t p t p t
=

≤ ≤ − −∏  (7) 
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For small ( )s ip t , typical for aircraft, the right side of equation 7 is [12]: 
 

 
11

1 (1 ( )) ( )
N N

s i s i
ii

p t p t
==

− − ≈∑∏  (8) 

 
Therefore, the upper bound of the POF, which is conservative, is approximately the sum of the 
single-flight POFs, ( )s ip t∑ .  
 
For example, consider a special case in which there is no strength deduction and the single-flight 
probability remains constant, ( )s ip t λ= . The corresponding bounds are: 
 
 ( ) ( ) ( )i N ip t p t N p t≤ ≤ ⋅  (9) 
 
According to exponential failure law, for a constant failure rate (also called the up-crossing rate),
λ , the time to failure has an exponential distribution and the POF is: 

 
 ( ) 1 N

Exact N
tp t e λ−= −  (10) 

 
For example, consider N = 20,000 flights with a small single-flight failure rate of 1.0 8eλ = − . 
The exact POF is ( ) 1.9998 4Np t e= −  with the bounds:  
 
 1. 8 ( ) 2.e-4Ne p t− ≤ ≤  (11) 
 
which shows that the upper bound, more important for aircraft risk assessment, is excellent, but 
the lower bound has a large error. 
 
Even if the single-flight POF is two orders of magnitude higher than the previous example, the 
exact interval POF is ( ) 1.98 2Np t e= −  and the bounds are: 
 
 1. 6 ( ) 2.e-2Ne p t− ≤ ≤  (12) 
  
which shows that the upper bound is only 1% greater than the exact. For aircraft applications, the 
previous cases suggest that the upper bound solution ( )ip t∑  can be a good approximation if 
there is no significant strength deterioration during the flight interval of interest. However, for 
the case with a decreasing strength, as in fatigue crack growth, the single-flight POF should be 
increasing: 
 

 2( ) ( )... ( )s N s s Np t p t p t< <  (13) 
 
Therefore, equation 8 becomes: 

 ( ) ( ) ( )s N N s Np t p t Np t< <  (14) 
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When the service life approaches the wear-out stage, the ( )s ip t may increase sharply. As a result, 
the value of ( )s ip t∑  may be dominated by the later flights, and the bounds can be expressed as: 
 

  
1

( ) ( ) ( )
N

s N s i s N
i

p t p t Np t
=

<∑ 

 (15) 

 
Put another way, the upper bound ( )s NNp t  may be too conservative. 
 
For aircraft risk assessment, the upper bound can provide a quick estimate, but the bound may be 
too conservative for decreasing strengths. The strength-conditioned method described in figure 2 
is computationally efficient and based on an exact formulation without simplifying assumptions. 

3.  STRENGTH-CONDITIONED EXPECTATION METHOD (SCEM) 

The foundation of SCIS is the Conditional Expectation Method, which is a simulation method 
designed to estimate failure probability by averaging samples of conditioned failure probabilities. 
Normally, a subset of the included random variables with higher contributions to the failure 
probability are selected as conditioned (or controlled) variables for generating random  
samples [13, 14]. The SCEM always selects all strength random variables, X, as the conditioned 
variables set up independencies between the conditional 'iE s  and provide the opportunity for 
accurate reliability calculations. By conditioning on X, the conditional reliability, denoted as 

( | )c iR t x , can be approximated by generating random samples and taking the sampling average. 
Figure 2 shows the concept of SCEM for aircraft reliability analysis. It shows that each strength 
realization changed over time, but the stress remains a stationary random process. In this 
example, the conditioned reliabilities stay near 100% until after approximately 16,000 flight 
hours, when the random stress begins to exceed the strengths with significant probabilities. 
Afterwards, the conditional reliabilities rapidly drop to less than 50%.  

 

Figure 2. Concept of strength-conditioned method 



 

7 

For each j-th realization of X, the ( )iY t s  are independent. Therefore, the conditional failure 
events are also independent, which leads to:  
 

 
1 1

1

1

| ) [( ( ) ( )) ... ( ( ) ( ))]

                 = [( ( ) ( )]

                =  ( | )

(c j j j N N

N

j i i
i
N

cs i j
i

N x P x t Y t x t Y t

P x t Y t

t x

R t

R

=

=

= > ∩ ∩ >

>∏

∏

 (16) 

 
where ( | )cs iR t x  is the conditional single-flight reliability, which is easier to compute than the 
unconditional single-flight reliability ( )s iR t . 
 
By integrating over the entire support of X, the unconditional reliability, or simply the reliability, 
is: 
 ( ) ( | ) ( )N c NR t R t f d= ∫ Xx x x  (17) 
 
which can be expressed in terms of the expectation function and estimated using the sampling 
average: 
 

 
1 1

1( ) [ ( | )] ( | )
NK

N c N f c i j
j i

R t E R t R t
K = =

 
= ≈  

 
∑ ∏X

x x  (18) 

 
where K is the number of realizations based on the Probability Density Function (PDF) of X. 
Finally, the POF is computed as ( ) 1 ( )N Np t R t= − . 
 
Similar to equation 18, the single-flight POF can be estimated using a sampling average of: 
 

 ( )
1

( | )
1( ) [ ( | )] cs N

K

s N cs N f j
j

p tp t E p t
K =

= ≈ ∑x xx  (19) 

In this project, SCEM is used to provide “exact” solutions to validate the SCIS solution method. 

4.  SCIS 

When the SCEM method is used, the strength realizations are generated by a random sampling 
algorithm based on the complete joint PDF of the strength variables, fX(x). The realizations can 
be more effectively generated by the SCIS method using a selected importance sampling PDF, 
h(x), which covers a very small, but important, part of fX(x). When h(x) is properly selected, the 
efficiency of SCIS, with respect to SCEM, can easily exceed two or more orders of magnitude 
for small POF (< 1.e-03). 
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SCIS is efficient because it generates and uses only the samples of X in a drastically reduced 
sampling region, Ω , that covers the domain of the events for which ( )

jS nP t  has a relatively 
significant value. Using SCIS, equation 19 is approximated by: 
 

  
1

| |

1

|

( )

( ) ( ) ( )

1          0

          ( )

j

N

S i
i

S N S N NS

K

j

S N

P t

p t p p t p p t

p p
K

p p t

Ω

=

Ω Ω Ω Ω

Ω Ω
=Ω

Ω Ω

= ⋅ + ⋅

≈ + ⋅

≈ ⋅

∏∑  (20) 

in which PΩ  is the probability in Ω ,  Ω∩Ω =∅ , and 1P PΩΩ = − , and | ( )S NP tΩ  is the conditional 
single-flight POF in Ω . 

 
When an importance sampling density function, h(x), is properly defined, the SCIS samples can 
be generated by an MCMC method [15–18]. The widely used Metropolis-Hastings algorithm 
[15, 16] was selected for this study. 
 
In section 4.1, two sampling density functions tested successfully for SCIS are discussed. For 
both cases, the samples of X were generated using only the last single-flight failure probability 
without inspections. These samples can be used to compute the entire history of the reliability. 

When applying SCIS, the number of equivalent MC samples is the number of SCIS samples 
multiplied by ( )1/ s Ntp . Put another way, the efficiency (gain) factor of SCIS to MC is ( )1/ s Ntp . 
 

SCIS SAMPLING DENSITY h1 4.1  

The unconditional single-flight failure probability can be formulated as the integral of the 
strength-conditioned conditional single-flight failure probability weighted by the joint PDF of 
the strength random variables X: 

 ( ) ( | ) ( )s csp t p t f d
Ω

= ⋅∫ Xx x x  (21) 

 
in which ( | )csp t x  is the conditional single-flight probability of failure and ( )fX x  the joint 
PDF. 
 
To minimize the sampling region for more effective sampling, the domain of X, Ω , is divided 
into two domains, 1Ω  and 2Ω , such that 
 
 

1 2

1 2

( )  + ( )  = 1p p f d f dΩ Ω
Ω Ω

+ = ∫ ∫X Xx x x x  (22) 
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Equation 21 can be rewritten as 
 

  

1 2

1 21 2

1 1 2 2

2 2

1 1

1 1

( ) ( )( ) ( | ) ( | )

          [ ( | )] [ ( | )]

[ ( | )]
          [ ( | )] 1

[ ( | )]

s N cs N cs N

cs N cs N

cs N
cs N

cs N

f fp t p p t d p p t d
p p

p E p t p E p t

p E p t
p E p t

p E p t

Ω Ω
Ω ΩΩ Ω

Ω Ω Ω Ω

Ω Ω
Ω Ω

Ω Ω

= ⋅ ⋅

⋅ + ⋅

 
= ⋅ ⋅ + 

  

∫ ∫X Xx xx x + x x

= x x

x
x

x

 (23) 

 
The division of Ω  is defined by selecting a truncation limit of ( | ) ( )cs Np t f⋅x x , LimitP , such that 

 

 
1

2

  if  ( | ) ( )

  if  ( | ) ( )

cs N Limit

cs N Limit

X p t f P

X p t f P

⊂ Ω ⋅ ≥

⊂ Ω ⋅ <

x x

x x

 (24) 

 
The above truncation serves to minimize the number of selected samples by neglecting the 
samples in the  domain with a small, controlled error in ( )s Np t . The truncation limit can be 
found by generating a set of pilot samples of ( )cs Np t  using the MC or the MCMC methods. 
Assuming K samples have been generated, the corresponding samples in the two domains,  

denoted as 1K  and 2K , are approximately proportional to  and 
2

pΩ . Therefore, equation 23 
becomes: 
 

 

( )

2

1 1

1

2

2

1 1 1 11

1

2

1

1

1

[ ( | )]
( ) [ ( | )] 1

[ ( | )]

( ( | ))
           = [ ( | )] 1 [ ( | )] 1

( ( | ))

cs N
s N cs N

cs N

K

cs N j
j

cs N cs NK

cs N j
j

E p tKp t p E p t
K E p t

p t
p E p t p E p t

p t
ε

Ω
Ω Ω

Ω

Ω
=

Ω Ω Ω Ω

Ω
=

 
≈ + 

  
 
 
 + = +
 
 
 

∑

∑

x
x

x

x
x x

x

 (25) 

 
in which case ε  is the relative error in ( )s Np t  due to the truncation. By specifying an acceptable

ε such as 0.01, a simple search procedure can be devised to find corresponding pairs of LimitP  
and 1K  samples. Afterward, by substituting equation 19 for equation 25, and ignoring the small 
relative error, ε , the single-flight failure probability can be estimated as:

  

 [ ]

1

1

1 11

1

1

( | )
( ) ( | )

K

cs N j
j

s N cs N

p t
p t p E p t p

KΩ

Ω
=

Ω Ω

  
≈ ⋅ ≈

∑ x
x  (26) 

 
 
 

2Ω

1
pΩ
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which leads to: 
 
 

[ ]1 1

1

1

1

1

( ) ( )
( | ) ( | )

s N s N
K

cs N
cs N j

j

p t p tp K
E p t p tΩ

Ω

= Ω

≈ ≈
  ∑x x

 (27) 

in which the single-flight POF at Nt , ( ) 1 [ ( ) ( )]s N N Np t P X t Y t= − >  can be computed by SCEM or a 
fast probability integration method (presented later). The result of equation 26 then leads to the 
single-flight reliability ( ) 1 ( )s sR t p t= − . 

In analogues to equation 26, the POF can be formulated in terms of the strength-conditioned POF 
( | )csp t x  as: 

 
1 1 11 1

1
1

( )  ( | )  1 ( | ) 1 1 ( | )  
t

c c cs
i

p t p E p t x p E R t x p E p t xΩ Ω ΩΩ Ω
= Ω

      = ⋅ = ⋅ − = ⋅ − −       
∏  (28) 

in which the product rule is valid because the strength-conditioned single-flight reliabilities are 
statistically independent. The unconditional reliability is ( ) 1 ( )R t p t= − . The failure rate per 
flight, also called the hazard function, is: 

 1( ) ( )( )  
( )

i i
i

i

R t R tr t
R t

+−
=  (29) 

As discussed in section 5, the samples generated in 1Ω  can also be used for computing the 
single-flight POF ( )s ip t  with inspections. After each inspection, 1 1:( | ):cs i j Kt t t xp ==  should be 
adjusted for those simulated samples that have been inspected and repaired or replaced.  

In effect, the above procedure to identify a reduced region, and generate samples in that region, 
is equivalent to using the following truncated sampling density: 

 
1

1

1
( )( ) fh

PΩ Ω

 
=  
  

X xx  (30) 

such that: 

 
[ ]

1

1

1 1

[ ( | )]
( ) ( | ) ( ) ( )

( | )
cs

s cs s N
cs N

E p t
p t p p t h d p t

E p t
Ω

Ω
Ω

Ω

= ⋅ ⋅ = ⋅∫
x

x x x
x

 (31) 

 
Once LimitP  has been found, additional MCMC samples based on the truncated 1h can be created 
as needed. 
 
Sampling density h1 was successfully used in the earlier study for SCIS. However, it requires 
searching for LimitP first, which could be avoided by using h2. 
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SCIS SAMPLING DENSITY h2 4.2  

A sampling density that seems more suitable for SCIS is one that is proportional to the 
conditional POF: 
   

 
2

( | ) ( )( )
( )

cs N

s N

p t fh
p t

⋅
= Xx xx  (32) 

 
The h2(x) is a valid PDF because ( )2 ( ) ( | ) ( ) / ( ) ( ) / ( ) 1cs N s N s N s Nh d p t f d p t p t p t= ⋅ = =∫ ∫ Xx x x x x . 

Because ( )s Np t  is a constant, the sampling density can be set to be ( ) ( )cs Np t f⋅ X x  for MCMC. 

Compared with 1 ( )h x , the key difference in using 2 ( )h x is that the density is proportional to 
both ( )f x  and ( | )cs Np t x , which ensures more samples will be created in the region that matters 
most. In addition, there is no need to find a truncation-error threshold to define 1Ω because 
insignificant risk region will be excluded automatically during the MCMC process. Therefore, 

2 ( )h x was chosen as the default sampling density for FlyRisk software implementation. 

Using 2h , the single-flight failure probability at any Nt t≤  can be reformulated as follows: 

 
2

2
( )

( ) ( | ) ( | )
( | ) ( | )

( ) ( | ) ( ) ( ) ( )s N cs cs

cs N cs N
s cs s N

h x

p t p t x p t x
p t x p t x

p t p t x f x dx h x dx p t E⋅  
= ⋅ = ⋅ ⋅  

 
∫ ∫X =  (33) 

from which the single-flight reliability is ( ) 1 ( )s sR t p t= − . 

Similar to equation 28, the POF can be formulated as: 

 1

2

2

1 1 ( | )  
( | )( )  ( ) ( )     
( | ) ( | )

i

cs
c i

s N s N
cs N cs Nh

h

p t x
p t xp t p t E p t E

p t x p t x
=

  − −   
 = ⋅ = ⋅ 
  
  

∏
 (34) 

The unconditional reliability function is ( ) 1 ( )R t p t= −  and the failure rate can be calculated 
using equation 29. 
 

SCIS SAMPLING DENSITY h*
 4.3  

Both h1 and h2 are used to generate SCIS samples without considering inspection effects. A third 
density function that takes into account the effect of repair/replacement is called h*, where the 
superscript “*” indicates that the effect of inspection is included. The density h*, as defined in 
equation 31, is proportional to the product of ( )f x  and the conditional single-flight POF, with 
inspection effect, denoted as * ( | )csp t x : 
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*

*
*

( | ) ( )( )
( )

cs N

s N

p t fh
p t

⋅
= Xx xx  (35) 

Single flight POF, with inspection effect, can be formulated as: 
 

 
* * *

* *
* * * *

*( )

( ) ( | ) ( | )
( | ) ( | )

( ) ( | ) ( ) ( ) ( )s N cs cs

cs N cs N

i i
s i cs i s N

h

p t p t p t
p t p t

p t p t f dx h dx p t E⋅  
= ⋅ = ⋅ ⋅  

 
∫ ∫X

x

x x
x x

x x x =  (36) 

 
To compute * ( | )cs Np t x , abbreviated as * ( )cs Np t , the following approximation formulas can be 
derived for m inspections at time 1:== i mt T : 
 

 
1 2

* *
1

1

1

1 1

( | Inspections at   : ) ( | No  Detection) ( | One Detection)

     = ( ( )) ( | No Detection)

       ( ( )) ( ( )) ( ( ))

cs N d m cs N cs N

m

i cs N
i

d m

i i i cs
i i d

p t T T T p t p t

PND a T p t

PND a T POD a T PND a T p

=

−

= = +

= = +

 
⋅ 

 

   
+ ⋅ ⋅ ⋅   

   

∏

∏ ∏
m

*

d=1
( | After Repair)Nt

 
 
 

∑

 (37) 

 
As shown in figure 3, where e Nt t= , equation 37 sums up detection scenarios and subsequent 
failures, weighted by the probabilities of occurrences. Equations 35 and 37 can be used to 
generate MCMC samples that follow the density function of h*. 
 
Equation 37 assumes that the repair/replacement is “ideal” (i.e., the probability of a repaired part 
failing before the service time should be zero). This assumption is reasonable if the flaw size 
after a replacement/repair is independent of the detected flaw size. For most high-reliability and 
high-failure-consequence structures, the assumption of ideal repair should be reasonable for at 
least two reasons: (1) high-quality repairs are expected for aircraft structures and (2) the POF is 
small, which means the chances of finding a significant defect (exceeding a repair threshold) 
should also be small, especially during the early stage of the service life. Consequently, the 
probability of the same structural element having larger than alarming flaw sizes more than once 
should be relatively very small. For critical parts, however, the effect of repair on POF must be 
included in equation 37. 
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Figure 3. Two failure paths after an inspection at Td (d = 1:m) 

Although, in theory, h* includes the inspection effect and therefore seems to offer optimal 
performance (i.e., requires less samples), it is also the most complicated in terms of 
implementation and validation. Consequently, h2 was selected for FlyRisk implementation 
because of its balanced performance in speed, accuracy, and robustness. To achieve the 
potentially highest performance, more research will be needed to study and implement h*. 
 
Theoretically, a key advantage of the SCIS method is its capability to handle a broad range of 
strength-changing models, either gradual or sudden, including degradation, impact damage, and 
maintenance. However, for highly complex strength-changing events, the successful 
implementations of SCIS may require tailored sampling algorithms to generate high-quality 
SCIS samples efficiently. 
 
5.  RELIABILITY-WITH-INSPECTION ANALYSIS 

TWO-STAGE SAMPLING METHODOLOGY 5.1  

This section describes a two-stage sampling methodology using SCIS samples generated at a 
selected point in time, tN, then using the same set of samples to simulate inspection effects and 
compute reliability-with-inspection for any time before tN. 

The foundation of the two-stage methodology is a maintenance simulation framework shown in 
figure 4 [8]. In Stage 1, the defect size samples that would lead to structural failures before the 
service lifetime are generated by MCMC without considering inspections. In Stage 2, inspection 
effects (using Probability of Detection [POD] models) are simulated using the Stage 1 samples. 
 
The approach was built on the assumption that a structure would not be degraded because of 
maintenance [8]. Although special cases, such as poorly implemented maintenance practices, 
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may cause the violation, the assumption is reasonable for safety-critical, high-reliability products. 
Based on this, only the fates of the potential failures need to be tracked. In the two-stage process, 
Stage 1 generates candidate failure samples and computes the POF assuming no inspections. 
Stage 2 then takes the samples to assess the risk-reduction performances of various maintenance 
strategies. 
 

 

Figure 4. Illustration of two-stage methodology  
Stage 1: Generate SCIS samples without inspection 

Stage 2: SCIS + inspection simulation 
 

Although the SCIS framework is capable of dealing with different degrees of repair qualities, for 
practical purposes, the current version of FlyRisk assumes a maintenance policy that a damaged 
part, if detected, is replaced by an original part or is repaired to as new condition. Other 
maintenance policies can be added to FlyRisk if needed. 

With FlyRisk, K samples of kx  are generated from h2 to compute ( )s Np t  and ( | )cs N kp t x , 
which are saved. To compute reliability-with-inspection, ( )WI

sp t , ( | )cs kp t x  with-inspection, and
( | )WI

cs N kp t x  are computed using the following equation:  

 
1

( | )1( ) ( )
( | )

WIK
WI cs k
s s N

k cs N k

p tp t p t
K p t=

= ⋅ ∑ x
x

 (38) 

from which the single-flight reliability is ( ) 1 ( )WI WI
s sR t p t= − . 

Similar to equation 34, the POF with inspection can be formulated as: 

Assumption: Safe parts remain safe after maintenanceDefect Size

Defect PDF
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1st Inspection

Grown defects
detected and repaired 

Critical Crack Size

Service Life N

Track unsafe 
defects
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2nd Inspection

Assumption: Safe parts remain safe after maintenanceDefect Size

Defect PDF
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1st Inspection
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WI
WI

1

2

2

1 1 ( | )  
( | )( )  ( ) ( )     

( | ) ( | )

i

cs
WI c i

s N s N
cs N cs Nh

h

p t x
p t xp t p t E p t E
p t x p t x

=

  − −   
 = ⋅ = ⋅ 
  
  

∏
 (39) 

 
As before, the unconditional reliability function is ( ) 1 ( )R t p t= −  and the failure rate can be 
calculated using equation 29. 
 

NUMERICAL ISSUES 5.2  

The reliability analyses center on computing 
1

1 ( | )  
i

cs
i

p t x
=

 − ∏ which requires computing 

1 1:( | ):cs i j Kt t t xp ==  for a large number of time steps (e.g., 20,000 flights) for every strength 
realization. To expedite the calculations, a reliability function was selected to fit the ( | )cs jt xp
function using a relatively small number of points. It was found that the three-parameter Weibull 
reliability function was able to provide excellent fits using less than 100 points, as opposed to 
20,000 points, and was able to speed up the overall reliability calculations by more than two 
orders of magnitude. 
 
The single-flight POF, ( )s Np t , is a key probability measure that can be computed accurately 
using the time-consuming SCEM method or sophisticated structural reliability analysis software. 
An alternative approach was developed and implemented in FlyRisk to compute ( )s Np t  using 
the SCIS samples. The approach, summarized in section 6, combines a kernel density estimator 
with a fast probability integration scheme. This unique approach allows FlyRisk to be a 
completely standalone code with the flexibility to be modified by users. 
 

FLYRISK EXAMPLE 5.3  

Based on the fracture-mechanics demonstration problem defined in appendix A, the reliability 
with three inspections was analyzed. Figure 5 compares the SCIS results (without inspection) 
with near-exact solutions. 
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Figure 5. FlyRisk validation: comparing FlyRisk result with near-exact solutions (linear 
and log probability plots) 

Figure 6 summarizes the FlyRisk result, which includes single-flight and cumulative POFs and 
hazard function (failure rate per flight). The saw-tooth shaped curves demonstrate the risk 
reduction effects. 
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6.  COMPUTE SINGLE-FLIGHT POF USING FAST PROBABILITY INTEGRATION  

When using SCIS, the POF formulations involve the single-flight POF, ( )s Np t . FlyRisk, a 
product-kernel density estimator combined with a fast probability integration scheme, was 
developed to compute ( )s Np t . This new approach eliminates the need for a separate reliability 
analyzer in the MATLAB FlyRisk code, resulting in a more compact and completely standalone 
FlyRisk code. 

Figure 6. Reliability without and with inspections (14,000, 16,000, and 18,000 flights) 
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The SCIS samples are generated in the standardized normal “u”-space, where u is related to X by 
the following parameter mapping: 

 1( ( ))
ii X iu F x−= Φ  (40) 

where ( )
iX iF x  is the original Cumulative Distribution Function (CDF) and ( )iuΦ is the standard 

normal CDF. The probability to be found is a probability integral: 

 ( ) ( | ) ( ) ( )s N cs Np t p t d I dφ= ⋅∫ ∫uu u u = u u  (41) 

Based on SCIS’s u samples, ( )I u  can be calculated. In addition, a Kernel Density Estimator 
(KDE) with a PDF of ( )Kf u  can be found such that:  

  ( ) ( )( ) 1
( ) /

K
K

f If d d
I A A

= =∫ ∫
u uu u u

u
 (42) 

where A = ( )s Np t  and therefore ( ) /I Au  is a valid PDF. From equation 42:  

 
( ) /

( ) ( ) ( )1
( ) / ( )

K K

I A

f I fd A E
I A A I

 
= ⋅  

 
∫

u

u u uu =
u u

 (43) 

which leads to: 

 

( ) /

1( )
( )

( )

s N
K

I A

p t A
fE
I

=
 
 
  u

=
u

u

  (44) 

There are many possible models for creating ( )Kf u . For FlyRisk, a product kernel in the 
following form [19] was chosen: 

 
1 1

1 1( ) ( )
nk

j ij
K

i j j j

u U
f K

k h h= =

 −
=  

  
∑ ∏u  (45) 

where K(.) is a univariate kernel function, k is the samples of SCIS, n is the number of variables 
in u, ju (j = 1:n) is the point to be estimated, ijU are the KDE data set, and jh (j = 1:n) are the 
bandwidths of K(.).  
 
Because [ ]( ) / ( )KE f Iu u in equation 44 is estimated by taking the sample average, the computed 
integral A is an approximate. However, if ( )Kf u  can be optimized to fit ( ) /I Au  well, the error 
of A could be minimized. For FlyRisk, the biweight kernel [15] was found to be suitable and 



 

19 

optimal jh (j = 1:n) was found by minimizing the sum of squared errors between ( )Kf u  and 
( ) /I Au . 

 
ILLUSTRATION EXAMPLE: ONE RANDOM VARIABLE CASE 6.1  

To illustrate the KDE-based fast probability integration approach, this example used a set of 500 
random samples generated from the right tail of a standard normal distribution. The analysis task 
was to estimate the probability of the tail region using only the samples generated from the tail 
and the integrand values at the locations of the samples. 
 
The left side of figure 7 shows the locations of the samples generated from the right tail of a 
standard normal. 

The probability to be computed is the following integral: 

 ( ) ( )A u du I u duφ
Ω

= ∫ ∫u =  (46) 

Based on the available u samples, the integrand ( ) ( )I u u= Φ  can be calculated. A KDE with a 
PDF of ( )Kf u  can be created using the following form: 

 
1

1 1( ) ( )
k

i
K

i

u Uf u K
k h h=

−
= ∑  (47) 

 
The right side of figure 7 shows how the bandwidth, h, of ( )Kf u is optimized to fit the scaled 
integrand function ( ) /I u A . 

From equation 44, 

 

( ) /

1
( )

( )
K

I u A

A
f uE
I u

 
 
 

=  (48) 

 
Using 10 runs of 500 random samples, the computed integral has an average error of less than 
1%, as shown in figure 8 (cumulative moving error = 0.6%). 
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Figure 7. Original normal PDF and the best-fit KDE 

 

Figure 8. Ten simulations of 500 data samples for KDE test 

FLYRISK EXAMPLE 6.2  

Based on the fracture-mechanics demonstration problem defined in appendix A, ( )s Np t  was 
computed using FlyRisk. Figure 9 shows how the optimized scaled KDE function ( ) /Kf Au  
provides a reasonable fit to the integrand ( ) ( | ) ( )cs NI p t φ= ⋅ uu u u . The error of the computed

( )s Np t was 5% by using four sets of 500 SCIS samples.  
 
This example demonstrates that the KDE-based probability integration is a feasible approach that 
can provide a good ( )s Np t  estimate using the SCIS samples already generated. 
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Figure 9. SCIS PDF compared with KDE 

(5% error in single-flight POF based on four sets of 500 SCIS samples) 
 
7.  SUMMARY AND DISCUSSIONS 

The ability to model and assess the risk of strength degradations, along with timely inspections 
and maintenance, can contribute significantly to maintaining the safety and reliability of aircraft 
structures. It is especially important to assess the effects of events that may cause significant 
sudden changes in the remaining strength and life of an aircraft. By monitoring structural 
reliability and taking necessary preventive maintenance actions at optimal times, the reliability 
can be sustained at more desirable levels. 
 
Built on a probabilistic damage tolerance framework, the Strength-Conditioned Importance 
Sampling (SCIS) approach provides a new direction to model time-dependent reliability to assess 
flight risk and risk-based inspection/maintenance planning. SCIS is mathematically rigorous for 
treating correlated random variables between flights, capable of handling sudden  
strength-changing events, and computationally efficient. Because the SCIS approach is 
sampling-based, it is also suitable for simulating complex random events including sharp,  
step-function like, strength-shifting events, including repairs and replacements. 
 
As demonstrated by FlyRisk, the SCIS approach accurately treats correlated random variables 
between flights and is computationally efficient as compared to the full-scale Monte Carlo or 
even Strength-Conditioned Expectation Method approach. The FlyRisk tool also demonstrated 
that the SCIS samples could be reused to compute the reliabilities for different inspection 
schedules. Therefore, the SCIS approach is ideally suited for risk-based inspection/maintenance 
planning. 
 
Because a metal fatigue model has been used to demonstrate the SCIS approach, it should be 
noted that the SCIS framework can handle different materials. Theoretically, a major advantage 
of the SCIS method is its potential capability to treat a broad range of strength-changing models, 
either gradual or sudden, including degradation, impact damage, and maintenance. However, for 
highly complex strength-changing events, such as impacts and repair/replacements, the 
successful and optimal implementations of SCIS may require improved sampling algorithms to 
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generate high-quality samples efficiently. For future research, it is important to use challenging 
practical problems to fully validate and demonstrate the robustness, accuracy, and efficiency of 
the SCIS approach. 
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APPENDIX A—FLYRSIK DEMONSTRATION EXAMPLE 

The analysis objective was to analyze the risk of crack growth at a fastener hole with inspections. 
The random variables include Equivalent Initial Flaw Size (EIFS), fracture toughness, and 
maximum stresses. 
 
EIFS, ia , has the following Weibull distribution, with η  = 0.0061 in. and β  = 0.996: 

 ( )( ) 1 exp[ / ]
ia iF a a βη= − −  (A-1) 

 
The fracture toughness, CK , is normally distributed with a mean = 35 and a standard deviation of 
3.1 ksi in⋅ . The maximum stress, S, has a Gumbel distribution defined in equation A-2, with  
A = 1.31 ksi and B = 14.6 ksi. 

 { }( ) exp exp[ ( ) / ]SF s s B A= − − −  (A-2) 
 
The Cumulative Distribution Function (CDF) and the probability density function (PDF) of the 
random variables are plotted in figures A-1–A-3. 
 

 

Figure A-1. PDF and CDF of EIFS 

 

Figure A-2. PDF and CDF of fracture toughness 
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Figure A-3. PDF and CDF of maximum stress 

The crack size, a, versus time, t, for damage-tolerance analysis is shown in figure A-4 as the 
“master” curve. For any realization of EIFS, the curve is shifted to match the crack size at time  
t = 0. For this study, the curve is fitted using equation A-3: 
 
 ( ) exp( ) 0.0003 exp(0.0001015 )oa t a bt t= = ⋅  (A-3) 
 
For a given EIFS, the shifted curve is: 
 
 ( ) exp( )o shifta t a bt t= +  (A-4) 

 in which the time shift is: 
 
 1 ln i

shift
o

at
b a

=  (A-5) 

 

 

Figure A-4. Crack size versus time model 

The relationship between the stress intensity factor ( ( ) /CR a K σ= ) and the crack size is shown in 
figure A-5. 
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Figure A-5. Normalized stress intensity factor 

Four POD curves, modeled using the following equation, were selected: 
  
 

min 50 min

1( )
ln( ) ln( )1 exp

3

POD a
a a a a

q
π

=
 − − −

+ − 
 

 (A-6) 

 
where 50a  is the crack size that can be detected 50% of the time, q is a scale parameter, and mina  
is the minimum crack size that can be detected. The parameters for the POD curves are listed in 
table A-1 and the curves are plotted in figure A-6. 
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Table A-1. Parameters for four POD curves 

 POD 1 POD 2 POD 3 POD 4 
a50 0.05 0.05 0.10 0.10 
q 0.50 0.75 0.50 0.75 
amin 0.00 0.00 0.00 0.00 

 

 

Figure A-6. Probability of detection curves 

The failure limit-state function is 
 

  ( )
( ( ))

CKg t Strength Stress R S S
Y a t

= − = − = −  (A-7) 

 
and the strength-conditioned probability-of-failure is 
 
 ( ) Pr . 1

( ( )) ( ( ))
c C C
f i S

i i

K KP t S F
Y a t Y a t
   

= < = −   
   

 (A-8) 

 
Figure A-7 compares the earlier Strength-Conditioned Importance Sampling (SCIS) method (for 
Approach 1)—which used ( )f x  as the importance sampling density (1000 samples)—with the 
conventional Strength-Conditioned Expectation Method (100,000 samples) for both single-flight 
and cumulative probability of failure. The results validated the earlier SCIS method for the 
without inspection case. 
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Figure A-7. Comparison of probability-of-failure using SCIS and SCEM methods (without 
inspection) 
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